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SYNOPSIS 

An ultrathin joint in a poly(methy1 methacrylate) (PMMA) beam was introduced by joining 
the two pieces using 1,2-dichloroethane. The viscoelastic property of the interfacial region 
was varied using dioctylphthalate (DOP) plasticizer and flexural waves in the beam were 
generated by impacting the beam with a small steel ball as well as with a calibrated ex- 
perimental impact hammer. The acceleration vs. time data of a given point on a beam were 
used to optimally separate the wave emanating from the joint and were shown to correlate 
with the mechanical strength of the joint. 0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

The use of adhesive bonds in primary structures is 
restricted due to the limited growth of methodologies 
for predicting their life. In spite of this limitation, 
it is preferred because of the distinct advantages that 
they offer such as uniform stress distribution, sealing 
against corrosion, damage tolerance, and stealthi- 
ness. It is desired to characterize the properties of 
adhesive bonds and to establish quantitative rela- 
tions between the material's structures and its me- 
chanical perf~rmance.'-~ Among the existing tech- 
niques, the most commonly used are pulse echo, 
through transmission, and resonance spectroscopy. 

An important characteristic of adhesive joints 
is that there is a definite limit to the bond strength 
developed between specified adherends for a par- 
ticular adhesive.6-10 When an adhesive joint fails, 
failure occurs either because of the failure of ad- 
hesive or that of the interfaces between the ad- 
hesive and the adherends."-'l Normally, a joint 
fails from a combination of both of these. The 
former is called cohesion failure, while the latter, 
adhesion failure. 

To characterize the properties of these joints, 
various theoretical models have been p r ~ p o s e d . ~ ~ - ~ ~  
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They can be classified into a complete bond thick- 
ness model and an interface weakness model. The 
former analyses the propagation of waves, such as 
plate waves, leaky waves, and interface waves, 
through the adhesive layer and the adherends. The 
signals received across are found to be affected both 
by the interface as well as by the cohesive weakness. 
The interface weakness model evaluates the inter- 
face weakness by examining the transmission factors 
of the interface between the adhesive and the ad- 
herends. 

The properties of adhesive joints also depend 
upon the nature of the interface, the adhesive, the 
materials to be joined, and the age. In the present 
work, flexural waves, generated through controlled 
impacting, are employed to characterize the joint 
interface. Experiments are conducted on a uniform 
rectangular poly(methy1 methacrylate) (PMMA) 
beam because it is easy to change the property of 
its joints. It is well known that the flexural wave 
at  any location is a superposition of a forward 
wave, a wave bearing information of the joint, and 
a wave due to echoes from the ends of the beam. 
Using a suitable search and optimization tech- 
nique, the composite flexural wave has been re- 
solved into its components. The wave correspond- 
ing to the joint is found to be sensitive to the vari- 
ation in the viscoelastic property of the joint, and 
the experiments conducted demonstrate a corre- 
lation between them. 
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under impact. 

(a) The PMMA beam; (b) butt joint; (c) beam 

EXPERIMENTAL 

As illustrated in Figure 1, a beam of PMMA of di- 
mensions, 25.4 mm width, 6.35 mm thickness, and 
840 mm length was suspended free, horizontally, 
with two threads tied to its ends from a rigid steel 
support. Flexural waves were generated by suitably 
impacting the beam. Quartz piezotron accelerome- 
ters were used to pick up the acceleration response 
of the beam from different locations every 3.90625 
ps. A multichannel signal coupler was connected to 
the accelerometers as well as to the impact hammer 
to condition their response commensurate with a 

Table I 
Response Generated by Steel Ball 

Approximate Division of Flexural 

Location from the 
Point of Impact Section Sampling Instants 

4.3 cm before joint 1 50-230 
2 231-440 
3 441-650 
4 651-1023 

fast Fourier transform ( FFT ) analyzer interfaced 
to the computer at the receiving end. 

Joint Preparation 

The PMMA beam of Figure 1 ( a )  was cut as shown 
in Figure 1 ( b )  and joined by a simple butt joint at 
a distance of 30 cm from one end using 1,Z-dichlo- 
roethane solvent. This technique of joining PMMA 
is known to give excellent adhesion of PMMA 
sheets. The 1,2-dichloroethane is an exceedingly 
good solvent of PMMA material and also has a very 
high vapor pressure because of which it quickly 
leaves the joint through evaporation. The advantage 
of joining PMMA pieces this way is that the thick- 
ness of the adhesive layer is close to zero and the 
properties of the interface region are identical to 
those of the PMMA beam. To adjust the viscoelastic 
properties of the interface of joint, dioctylphthalate 
(DOP) plasticizer was mixed with the solvent and 
the joint prepared similarly. On evaporation of the 
solvent, the DOP is left behind at the interface, 
which changes its viscoelastic characteristics. 

Generation of Flexural Waves 

Flexural waves were generated flexural in the beam 
by striking it in the middle with a steel ball, 10 mm 
in diameter, from a fixed height of 70 mm, as shown 
in Figure 1 (c )  . The accelerometers were positioned 
on the beam at  a distance of 1.30,4.30, and 8.30 cm 
from the point of impact toward the joint. On the 
basis of visual inspection of the response, it was 
possible to isolate a portion from the flexural re- 
sponse curve (of 20 ms duration) and to analyze it 
for different types of joints. The rough demarcation 
of this portion is given in Table I. The results of the 
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standards, tested on a universal testing machine. 

Specimen (of a typical beam) as per ASTM 
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Figure 3 Ultimate strength of the joint (in kgf) vs. % 
DOP as determined from the universal testing machine. 

analysis show the existence of a significant param- 
eter sensitive to the joint property. Further exper- 
imentations were performed with a calibrated impact 
hammer. 

Flexural Wave Generation using Calibrated 
Impact Hammer 

A calibrated impact hammer was hung free from the 
frame and was used to apply a controlled force to 
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Figure 4 Acceleration vs. sampling instant (1024 sam- 
ples in 20 ms), at  a point on the beam 4.30 cm before the 
joint, due to impact with a steel ball (one acceleration unit 
= 421.03 m/sz)). 
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Figure 5 
weight. 

Amplitude of second peak vs. % DOP by 

generate flexural waves in the beam. A slotted angle 
on a support was used to guide the impact hammer 
from a given height and distance from the beam. 
The relative motion between the thread and the 
beam and that between the iron frame was elimi- 
nated by properly gluing their points of contacts. 
This obviates any friction which might interfere with 
the propagation of flexural waves in the beam. Flex- 
ural responses were recorded for a period of 4 ms, 
during which the hammer impacted only once. A 
small PMMA point of negligible mass was attached 
on the point of impact at the center of the beam in 
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Figure 6 
the optimization code for a typical beam. 
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Table I1 
(for Different Beams) Located 5 cm Before the Joint 

Initial and Optimal Values of Complex Coefficients of Flexural Response at a Typical Point 

2.5 Initial 

5.0 Initial 

7.5 Initial 

10.0 Initial 

12.5 Initial 

15.0 Initial 

Optimal 

Optimal 

Optimal 

Optimal 

Optimal 

Optimal 

(b) k = 1 or w = 750a rad/s 

1195.752 
1207.710 
1195.752 
1422.945 
1195.752 
1231.625 
1195.752 
1195.752 
1195.752 
1195.752 
1195.752 
1219.667 

-200.267 
-202.270 
- 1001.460 
-1191.740 

-200.084 
-206.087 

-91.847 
-91.847 
-72.767 
-72.767 

74.9537 
280.4529 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

2.5 Initial 

5.0 Initial 

7.5 Initial 

10.0 Initial 

12.5 Initial 

15.0 Initial 

Optimal 

Optimal 

Optimal 

Optimal 

Optimal 

Optimal 

89.14785 

89.14785 

89.14785 

89.14785 

89.14785 

89.14785 

166.7064 

177.404 1 

181.8615 

185.4274 

141.745 

142.6364 

53.11034 
99.31632 

331.1812 
659.0504 

-201.513 
-411.087 

-23.0354 
-47.9136 
-17.2859 
-27.4846 

-225.317 
-360.507 

-863.594 
-1911.14 

-863.594 
-1665.01 

-863.594 
-1870.55 

-863.594 
-1870.55 

-863.594 
-1763.46 
-863.594 

-1952.59 

1421.146 
3183.371 
1589.432 
3321.915 

1796.494 
1418.352 
3148.74 
1393.765 
2996.595 

2013.366 

809.2318 

886.9459 

order to spatially localize the impact force. Restric- 
tion of the peak value of the impulse force within 
?5% of a specified value was found to give the best 
reproducible results. 

THEORETICAL DEVELOPMENT 

It may be recalled that any signal g ( t )  satisfying 
Dirichlet’s conditions for finite duration can be ex- 
pressed with the help of a Fourier integral48 as 

where G ( w  ) is defined by the Fourier transform 

For the problem of one-dimensional transverse wave 
propagation in a PMMA beam, it is assumed that 
at any given location on a beam the flexural response 
is a superposition of three types of waves: ( a )  for- 
ward wave, gf( t ) ,  arising from the impacting of the 
beam: ( b )  echo, g,( t ) ,  from the joint, and (c )  echo, 
g, ( t )  , from the ends of the beam. This implies that 

( 3 )  

In terms of its Fourier transform, this equation can 
be written as 

+ Ge(w)]exp(j2awt)dw (4) 

It is desired to separate the waveform corresponding 
to the joint because it is expected that it should carry 
some information concerning the nature of the joint. 
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Table I11 
the Joint on a Beam with Different Initial Populations 

Optimal Values of Complex Coefficients of Flexural Response at a Point Located 5 cm Before 

0.382 

0.563 

0.108 71.082 1 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

69.8793 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

72.0807 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1207.71 

-1219.26 
191.6678 

-235.138 
-28.439 
-20.2839 
146.6164 
73.11405 
40.22677 
54.80875 

1207.71 
184.536 

-256.281 
- 1217.06 

-34.6214 
-19.1463 
146.8709 
88.68462 
43.57167 
59.9754 

1207.71 

-1204.42 
-245.71 

195.2337 

- 29.9847 
-24.3988 
160.1071 
103.5782 
22.84211 
60.45883 

-202.27 
114.1872 
685.8073 
385.143 
186.6327 
194.2424 

-61.4362 
-82.9547 
-57.0925 

32.65966 

-202.27 
109.9384 
685.8073 
393.7496 
227.2052 
175.044 
43.54621 

-74.5199 
-91.8746 
-43.1423 

-202.27 
116.3115 
676.6223 
389.4464 
196.7758 
238.2857 

-87.0347 
-45.9373 
-56.5758 

25.85556 

0.0 
-1911.14 

38.63196 
686.3358 
472.2038 

89.14599 

67.94595 
-8.25962 

-26.2645 

- 13.6086 

0.0 
-1911.14 

37.87075 
715.3951 
447.2476 
130.2366 
-35.1557 

76.84083 
-6.43971 

-10.5444 

0.0 
-1861.91 

38.63196 
697.0418 
629.5117 

81.485 
15.25271 
80.56336 
-6.25306 
- 13.4798 

0.0 
3183.371 
874.1748 
-59.2043 

-364.363 
-137.176 

44.34067 
36.74568 
8.42146 

65.62904 

0.0 
3183.371 
856.9497 
-61.2636 

-328.35 
-200.406 

59.12091 
40.69683 

6.56589 
49.59297 

0.0 
3140.737 
874.1748 
-60.2339 

-446.98 
-125.388 

35.10303 
20.34841 
6.37557 

65.0351 1 

a To randomize initial population of variables. 

To do so, eq. ( 4 )  is discretized as follows treating 
Gf(  kF,), G,( kF,), and Ge( kF,) as complex variables, 
to be optimally determined later: 

+Ge(kFs)]exp j - k n  G 1 
L < N , n = 0 , 1 ,  . . . ,  L - 1  

(5) 

Above, g( nT,) represents a finite sequence of N 
samples of the flexural response separated in time 
space by T,  instants where 1 / T, is greater than or 
equal to twice the highest frequency component of 
the signal. The coefficients Gf ( k F s )  , Gj( kF,) , and 

Ge(kF,)  are complex finite sequences of L samples 
separated in the spectral space by F, Hz. 

The Optimization Problem 

The optimal complex coefficients, G, (kF,) , G,( kF,) , 
and Ge (kF,)  , are determined so that the response 
g( t )  in eq. (3)  minimizes the sum of the squares of 
difference between ( a )  the response reconstructed 
from these three coefficients and ( b )  the actual re- 
sponse in time space. The optimization problem is, 
thus, mathematically stated as 
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Figure 7 Amplitude ratio of optimal coefficients (cor- 
responding to k = 0, 1) after and before the joint vs. % 
DOP. 

where the objective function I is the sum of the 
square error and g ( n T, ) is the experimental accel- 
eration value of a given point on the beam. 

In the absence of a joint, the acceleration at  any 
point, g, ( t ) , is the superposition of only gf ( t )  and 
g , ( t )  as 

If in the beam with a joint the superposition of gf( t )  
and g, ( t ) is gz ( t 1, then eq. ( 3  ) can be rewritten as 

Since gz ( t )  is expected to be close to g,, suitable 
guess values for G z  ( k F , )  and G,( kF,) were chosen 
in order to initiate the optimization process. The 
guess value for G$ ( kF,) was based upon the spectral 
coefficient of the flexural response of an identical 
point on a beam without the joint. The difference 
of the corresponding spectral coefficients of the 
flexural responses of identical points on the beam 
with and without the joint was used to provide the 
guess value for Gj( kF,) .  The choice of initial con- 
ditions in this manner is observed to preserve the 
pattern of the original flexural waveform. 

To reduce the number of independent variables, 
L is taken to be 10, associated with the first 10 spec- 
tral points with N = 1024 in time space. For this, 
the problem consists of optimization in a 40 variable 
(both real and imaginary) search space. With flex- 
ural wave data collected so far, this value of L has 
been observed to be a good compromise between the 
desirable accuracy of result and the computer time. 

RESULTS AND DISCUSSION 

The joints were prepared using a solution of 1,2- 
dichloroethane (DCE) and dioctylphthalate (DOP) 
plasticizer. The latter has very low vapor pressure 
and is expected to stay near the joint after DCE is 
evaporated. This way led to the variation of me- 
chanical properties of the joint and the ultimate joint 
strengths of the PMMA beams were determined us- 
ing an universal testing machine (UTM). The 
specimens were made as per ASTM standards as 
shown in Figure 2. The load was applied at the rate 
of 0.2 mm/min until failure. For specimens made 
the same way as the beams tested earlier, the failure 
strength is found to be a strong monotonically de- 
creasing function of DOP percentage as seen in Fig- 
ure 3. The fall in the ultimate strength is expected 
because the DOP stays in the joint, making it vis- 
coelastic. It is desired to predict this property using 
a single-point measurement of the beam’s acceler- 
ation vs. time under a transverse impact. To do so, 
a PMMA beam with a joint was suspended freely as 
shown in Figure 1 and impacted with a steel ball. A 
typical acceleration response of the beam with a joint 
is shown in Figure 4. On superposition of different 
time responses (of beams with different joint prop- 
erties) for a particular point on a beam, it is observed 
that some specific portion of this curve is affected 
by a fraction of DOP content in the joining solution. 
By visual inspection, such a portion as section 3 in 
Figure 4 is marked out (also refer to Table I) .  In 
fact, three more sections are also marked out as given 
in Table I. A computer program is written to rep- 
resent each section by 128 equispaced acceleration 

4 
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5 crn after JOlllt + 

+ 
0 
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0 2  I 6 8 LO I2 I4 

ADOP 

Figure 8 Peak values of joint waves vs. % DOP. 
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values. Fast Fourier transforms of the time re- 
sponses, of different beams, of all sections are ob- 
tained. A careful observation of the amplitude vs. 
frequency shows that the second peak is significant. 
In Figure 5, the peak amplitude vs. % DOP in the 
joining solution is shown. The “0% DOP” stands 
for an identical beam without a joint. It is found 
that the peak amplitude of the third section is a 
monotonically increasing function of % DOP. For 
20% DOP, an increase of about 425% in the peak 
amplitude is observed. Such sensitivity is not found 
for other sections and it appears that the informa- 
tion concerning the properties of the joint is em- 
bodied in the third section of Table I. 

One disadvantage of the experimentation with a 
steel ball is that the frequencies of the flexural wave 
generated upon impacting are very large, whereas 
sensitivity to the joint properties is higher for lower 
frequencies. In addition to this, multiple impacts 
may also occur. In an effort to understand the pro- 
cess of impacting, a calibrated impact hammer was 
employed. In this study, butt joints were made with- 
out the straps. Upon measuring the impact force as 
a function of time, at least three impacts over the 
period of 20 ms are found. The second and third 
impacts are of smaller magnitudes but cannot be 
ignored or eliminated. Hence, acceleration mea- 
surement only up to 4 ms, during which only one 
impact occurs, is considered. Since the impact force 
can be measured as a function of time, the force 
applied can be controlled more carefully. The peak 
value of the force has been restricted to within f 5 %  
of a specified value and the experimental accelera- 
tion vs. time data are recorded. 

Experimental data were used to find out the 
properties of the reflected wave, gj( t )  , emanating 
from the joint. The wave gj( t )  becomes separated 
when the objective function I is minimized using a 
genetic search technique (described in Appendix). 
In Figure 6 ,  the values of the objective function vs. 
the iteration number, in the genetic algorithm, for 
flexural responses obtained before and after the joint 
on a typical beam are shown. It is interesting to note 
that I rapidly reduces from O (  10’) to a satisfactory 
O( 10). For the typical responses, the acceleration 
profile reconstructed from the optimal coefficients, 
G, ( kF,) and Gf ( kFs) ,  is always found to agree very 
well with the experimental acceleration profile. 

Table I1 gives the computed results of the real 
and imaginary amplitudes for the first two frequen- 
cies, k = 0 ( 0  Hz) and k = l ( 2 5 0  Hz). It is noticed 
that, for any beam, only the optimal values of 
Gw ( kF,) remain virtually the same as their corre- 

sponding initial guess values, G z  (kF,)  . This sug- 
gests that & ( kF,) solely depend upon the geometry 
of the beams which is same for all beams. The op- 
timal coefficients, G.( kF,) , are found to be sensitive 
to the change in percentage of DOP in the joint and, 
thus, should carry information about the joint. In 
Table 111, the effect of different seeds, used to gen- 
erate random numbers R, and Re of eq. (9) ,  has 
been studied. For different random seeds, used to 
initialize R, and &, the optimal coefficients, 
&( kF,) and Gj( kF,) are found to be virtually the 
same. This suggests that the result obtained rep- 
resent the true optimal values. 

Since the amplitude of the optimal coefficient 
corresponding to joint in Table I1 does not, alone, 
seem to have any correlation with the DOP content, 
the flexural responses after the joint were also mea- 
sured and the corresponding joint waves were sep- 
arated using the optimization technique. The am- 
plitude ratios of the magnitude of optimal coeffi- 
cients of acceleration responses before and after the 
joint are plotted in Figure 7. Here, it is found that 
this ratio increases monotonically and its sensitivity 
increases with reducing frequencies as seen in this 
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Table A. I The Process of Crossover and Mutation in Figure 2 

Crossover or recombination of strings 

A string is defined as a number encoded in binary digit system. For example, x = 20 can be written as 1 0 1 0 0 in 
binary, which is a string. In the process of crossover, we randomly pick two strings at a time, say x = 13 and x = 20, 
from a population of variables and recombine them as follows: 

1=400 1=484 - - 
( x  = 20) or 101 : 00 + 101 1 0  or x = 22 

(x = 13) or 001 : 10 00100 or x = 04 
I= 169 I=16 - - 

The vertical dots, above, represent a randomly chosen crossover site, the bits right to which are swapped. 

Mutation of strings 

A string from the population of variables is picked up. With a very small probability, each bit is changed, i.e., if i t  is 
1, then it is made 0, and if it is 0, then it is made 1, applying the Monte Carlo method. The process is repeated for all 
strings in the population. For example, with the strings x = 22, x = 20, and x = 13, the following mutations may 
happen: 

I=& I=784 - - 
( x  = 22) or 01110 

( x  = 20) or 10100 + 10100 or x = 20 

11100 or x = 28 
1=400 1=400 - - 
1=169 I=64 - - 

(x = 13) or 01101 01000 or x = 08 

Optimally better string, x = 28, is substituted in place of x = 22, while the optimally inferior string, x = 8, is rejected. 

figure. For flexural wave measurements at locations 
5 cm before the joint, the optimal coefficients cor- 
responding to the joint, G.( kF9),  are used to recon- 
struct the joint waves in time domain. In Figure 8, 
the peak values of the separated joint waves (before 
and after the joint) are plotted and are found to 
decrease with increase in the DOP content of the 
joint. Thus, it appears that one can predict the me- 
chanical strength of the joint using the transverse 
wave technique. 

CONCLUSIONS 

A beam of PMMA of a uniform cross section was 
prepared and an ultrathin joint was introduced at  
the desired location using 1,2-dichloroethane. The 
property of the joint was varied using a dioctyl- 
phthalate plasticizer. Transverse flexural waves were 
generated by striking it with a small steel ball of 1 
cm diameter at its center and the acceleration as a 
function of time was measured at various locations. 
The flexural wave, so generated, at any given loca- 
tion appears to have a region where the information 
(i.e., % DOP content) concerning the nature of the 

joint is coded. It is shown that the FFT of this por- 
tion (section 3 of Fig. 4 )  is linearly correlated with 
the % DOP for smaller frequencies. To carry out 
more controlled experiments, studies were made us- 
ing a calibrated impact hammer and it was found 
that striking is a multiple impact process. However, 
in a short time ( - 4 ms) , there is always only one 
impact for which the acceleration vs. time data a t  a 
given location on the beam was collected. Using an 
optimal search technique employing genetic algo- 
rithms, the flexural wave corresponding to the joint 
was separated. It is shown that the waves reflected 
and transmitted through the joint are related to the 
content of plasticizer in it. The ultimate joint 
strength of the PMMA beams was also determined 
using a universal testing machine as per ASTM 
standards and the failure strength is found to de- 
crease monotonically with the amount of DOP in 
the joint. This suggests that the transverse wave 
measurements developed in this work may be used 
for nondestructive testing of joints. 
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APPENDIX 

Genetic Algorithm 

Genetic algorithms (GAS) are robust and versatile 
optimization  technique^*^*^^ which do not require the 
objective function to be continuous and/or differ- 
entiable. The basic structure of GAS is shown in 
Figure A.l  and its working is demonstrated with a 
simple example on the same diagram. As shown in 
the flow chart, the guesses leading to higher values 
of objective functions are favored with the help of 
a Monte-Carlo selection technique. For the example 
in Figure A.1, the Monte Carlo selection gives the 
guesses for the next stage to be x = 13, 20, and 20. 
In Table A.1 the crossover and mutation processes 
have been defined which are done by writing these 
numbers into binary strings. These operations pro- 
duce the new values of guesses which are far better 
than the original ones. For the example discussed, 
there is a local maximum at x = 31 and the crossover 
and mutation operations lead to the new guess values 
of xi = 28, 20, and 13, which are closer to the opti- 
mum value. The experience of working with this al- 
gorithm shows a fast convergence toward the opti- 
mal solution, and it is particularly true for the pres- 
ent problem where other standard search techniques 
do not work well enough. 

The present problem consists of finding the op- 
timal real and imaginary values of Gw(lzfs) and 
G(tzF,). This means that if L is chosen in eq. (5) 
to be 10, it would mean that there would be 40 in- 
dependent variables to optimize. A single string 
(defined in Table A.1) is formed in which all these 
variables are represented as shown in Figure A.2. 
Each slot in the string has a fixed number of binary 
bits. Experience in working with this has shown that 
randomizing the initial population on the basis of 
guess values leads to a faster convergence. To do so, 
the random population is related to the guess values, 
&i,o and G,i,o, in the following way: 

i = 0 , 1 , .  . . , 9  (9) 

Here, and &,i are the complex random numbers. 
The purpose of this formulation is to provide the 
inequality constraints 

i = 0, 1, . . . , 9  (10) 

if Rw,i 2 0 and Z?j,i 2 0. Otherwise, 

i = 0 , 1 , .  . . , 9  (11) 

if Rw,i I 0 and Rj,i I 0. This ensures variation of 
the 40 variable search space by varying the order of 
& , i  and R,,i in the vicinity of the guess values where 
the optimal coordinates (Q,,o, &,I, . . . , &,9, Q j , o ,  

. . . , &) are expected. Since the sum of squares 
of the error has to be minimized, the objective func- 
tion value in the algorithm should be 1 / I i ,  i = 0, 1, 
. . -  9.Ithasbeentakentobe(l/Ii)*,i=O,l, - . .  
9, because using the square of the objective function 

Figure A.2 
in optimization. 

Layout of a multivariable binary string used 
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value has been shown to lead to faster convergence 
of GAS faster.51 
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